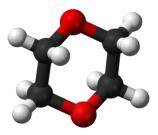
Hazen

Treatment technologies for removing contaminants of emerging concern: 1,4-dioxane, 1,2,3-TCP, PFOA/PFOS, perchlorate, and Cr6

Chino Basin Water Quality Colloquium May 2, 2019


Nicole Blute, PhD, PE

Agenda

- Review emerging contaminants of concern in the Chino Basin
- Present treatment options
- Discuss factors affecting treatment selection and design

Background

Sources	Used as a solvent and stabilizer in the past
Chemical Characteristics	Highly soluble in water resulting in significant groundwater transport Low adsorbability to carbon
	Relatively resistant to biological treatment options

California Notification Levels: PFOA – 14 ug/L, PFOS – 13 ug/L

1,4-Dioxane AOP Treatment

UV light reacts with an oxidant (peroxide, ozone, hypochlorite) for form hydroxyl radicals (•OH)

•OH radicals are highly reactive, including with organic constituents of concern

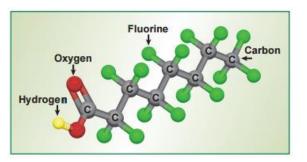
1,4-Dioxane AOP Treatment

Key Design Parameters

- Elevated nitrate levels can result in scavenging and production of nitrite for medium pressure UV
- TOC and UV transmissivity are key
- Buffer capacity of water typically makes UV/chlorine more costly unless treating RO permeate
- Residual peroxide quenching (GAC or chlorine)

 $Cl_2 + H_2O_2 \rightarrow O_2 + 2 HCl$ Approximately 2:1 $Cl_2: H_2O_2$

1,4-Dioxane Emerging Technology - Resin


Ion Exchange with Regeneration

- Industrial applications, fairly small scale (100-200 gpm)
- Requires steam regeneration of resin on site

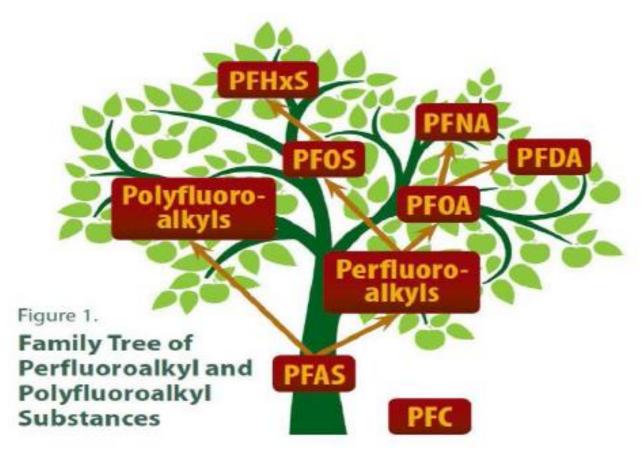
PFOA/PFOS

Background

Sources	Anthropogenic compounds used in many consumer products (Teflon, Scotchgard, Gore-tex), fire fighting foams		
Chemical Characteristics	Mobile in water Very persistent in the environment (high solubility, low volatility		
	High adsorbability to carbon for long chains; less for short chains Biological degradation minimal		

California Notification Levels: PFOA – 14 ng/L, PFOS – 13 ng/L

PFAS Family of Chemicals


TERMS PFC = Perfluorinated Compound

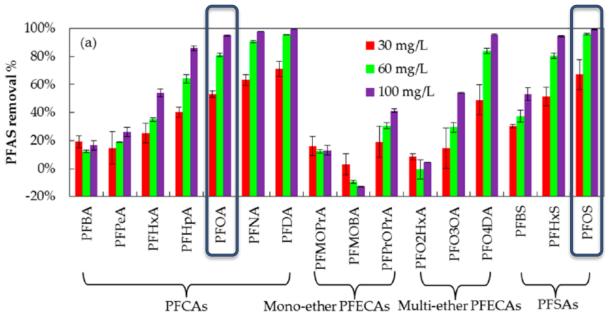
PFAS = Perfluoroalkyl or Polyfluoralkyl Substance

PFOA = Perfluorooctanoic Acid C₈HF₁₅O₂

PFOS = Perfluorooctane Sulfonate C₈HF₁₇O₃S

 $GenX = C_6H_4F_{11}NO_3$

Source: https://www.atsdr.cdc.gov/docs/17_278160-A_PFAS-FamilyTree-508.pdf


Treatment Options for PFOS and PFOA

PFOA/PFOS GAC Treatment

Key Design Parameters

- GAC is effective for longer-chain molecules
- Removal to non-detect levels may require polishing step e.g., GAC or IX

Ref: Sun et al., 2016

PFOA/PFOS Persistence

LOCAL & STATE > Posted March 19 Updated March 20

INCREASE FONT SIZE

Public health experts aim to stop spreading of sludge

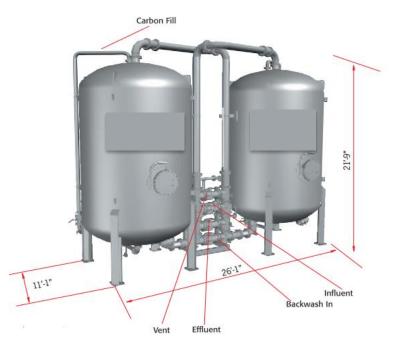
Fred Stone says he can't sell milk from his herd because of exposure to PFAS, chemicals linked to cancer that were found in the sludge he spread on his fields for decades.

```
BY KEVIN MILLER STAFF WRITER
```


Fred Stone holds Lida Rose, one of his brown Swiss cows, on his Arundel dairy farm before a news conference Tuesday that was held to raise awareness about PFAS chemical contamination in his fields and cows resulting from municipal sludge he had spread from 1983 to 2004. Lingering contamination in his herd is forcing him to dump the milk his cows produce. *Gregory Rec/Staff Photographer*

1,2,3-Trichloropropane

Background



Sources	Primarily from an impurity in fumigants Also reported to be an anthropogenic compound associated with degreasing and cleaning agents
Chemical Characteristics	Mobile in water Persistent in the environment (high solubility, low volatility)

No federal MCL, but California has an MCL of 5 ng/L

1,2,3-TCP GAC Treatment

- GAC listed by DDW as the only best available technology
- Commonly lead-lag configuration to maximized carbon utilization
- GAC removes 1,2,3-TCP to less than the DLR

1,2,3-TCP Emerging Technology – Biological Treatment

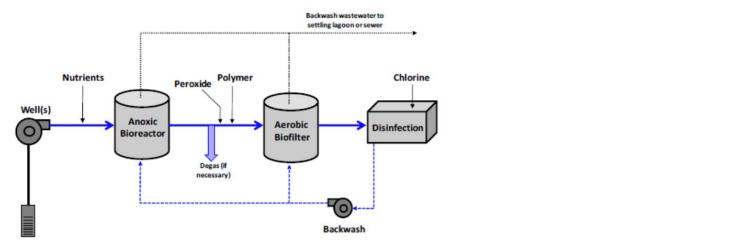


Figure 1: biottta™ System Process Flow.

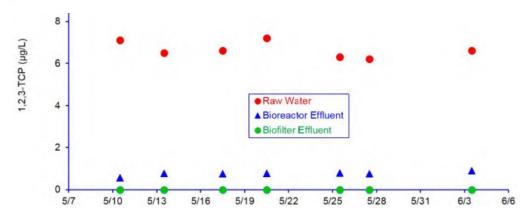
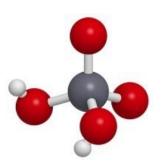



Figure 28: 1,2,3-TCP Concentrations across the Pilot System during Steady-State Operation

Carollo, 2016.

Chromium

Background

Sources	Naturally occurring from minerals Anthropogenic		
Chemical Characteristics	Inorganic anion Cr6 primary aqueous species; Cr3 forms precipitate		
	Persistent in the environment (high solubility, low volatility)		
	Biological degradation is possible		

Former Cr6 MCL of 10 ug/L; new MCL expected.

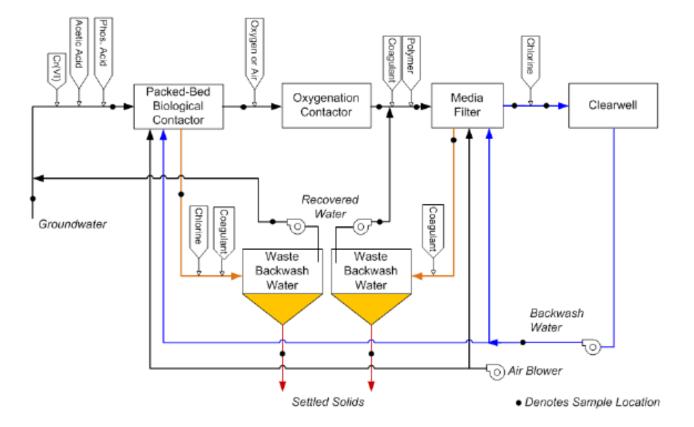
Chromium Treatment

Best Available Technologies

Weak-Base Anion Exchange (WBA)

Strong-Base Anion Exchange (SBA)

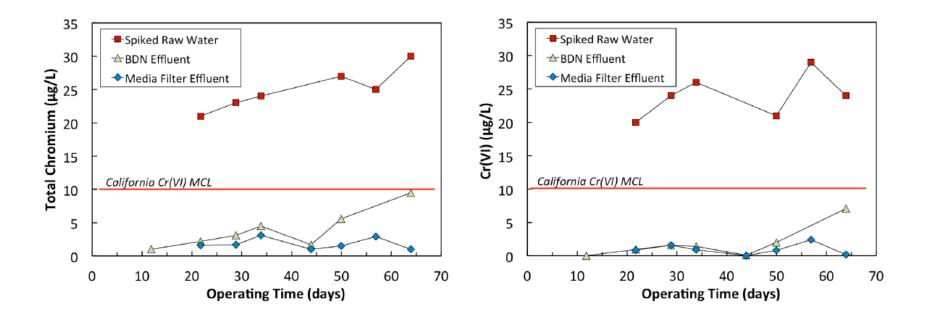
Reduction Coagulation Filtration (RCF or RCMF)



Reverse Osmosis (RO)

Alternate Technology – Stannous Chloride

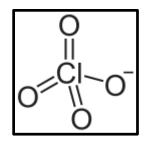
- Salt made of tin and chloride (SnCl₂)
- No regulatory guidance on tin
- Reduces Cr(VI) to Cr(III) and forms a precipitate that can be filtered
- Could be used with filtration similar to iron in RCF process
- Concern about long term fate of tin and chromium particles in the distribution system – more study is needed


Alternate Cr6 (and nitrate, perchlorate, and VOC) Technology – Biological Treatment

LA County District Well 37-01

WQTS, 2014. WRF 4470.

Alternate Cr6 Technology – Biological Treatment


(1) Reduction from Cr(VI) to Cr(III): $Cr^{6+} + 3e^{-} \rightarrow Cr^{3+}$ (2) Precipitation of Cr(III): $Cr^{3+} + 3OH^{-} \rightarrow Cr(OH)_{3(s)}$

(3) Coagulation & Filtration of $Cr(OH)_{3(s)}$ precipitate

WQTS, 2014. WRF 4470.

Perchlorate

Background

Sources	Solid rocket fuels and propellants, Chilean fertilizers, background
Chemical Characteristics	Inorganic anion Persistent in the environment (high solubility, low volatility) Low adsorbability to carbon Biological degradation is possible

California MCL 6 ug/L; DDW likely to decrease the DLR to determine if regulation to a lower concentration is warranted.

Perchlorate – Ion Exchange Treatment

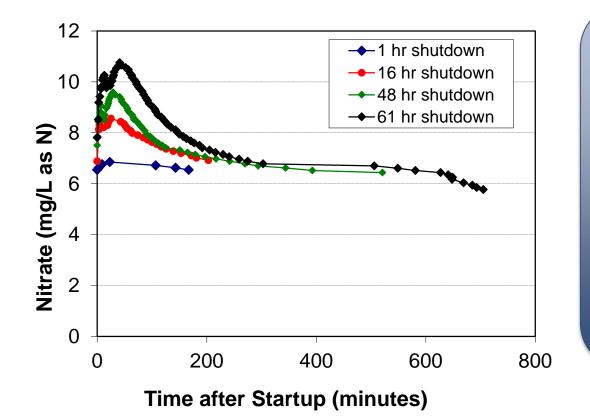
Removal by Ion Exchange

Regenerable SBA

Perchlorate-Selective Resin

Summary of Treatment Approaches

	GAC	AOP	IX	RCF	Biolog- ical	RO
1,4-Dioxane	√ (quench- ing)	\checkmark				\checkmark
1,2,3-TCP	\checkmark				\checkmark	\checkmark
PFOA/PFOS	\checkmark		\checkmark			\checkmark
Perchlorate			\checkmark		\checkmark	\checkmark
Cr6			\checkmark	\checkmark	\checkmark	\checkmark


BAT or leading technology

Can be effective but not BAT

Many Roads Lead to GAC...

GAC Operations Needs to Consider Nitrate

Options:

- Online analyzer with filter-to-waste or blending
- Minimize down time
- IX downstream of GAC if necessary

Questions?

Nicole Blute 310-266-6212 nblute@hazenandsawyer.com

