WEST / YOST Water. Engineered.

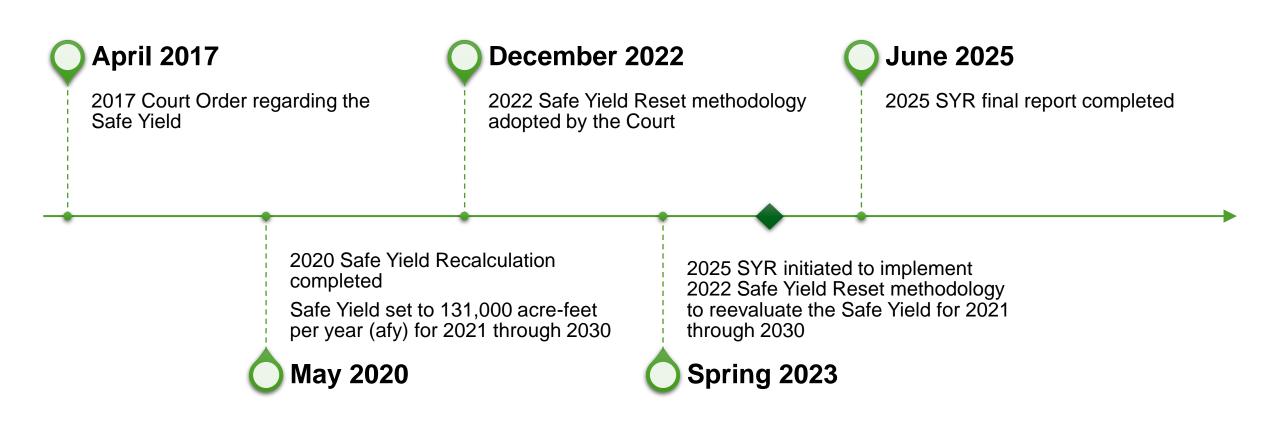
2025 Safe Yield Reevaluation Scenario Design Workshop #3 June 25, 2024

Meeting Objectives

Develop an understanding of the proposed Projection Ensemble, the proposed quantitative Water Plan scenarios, and approach for simulating future climate

Gather feedback on quantitative Water Plan scenarios and approach for simulating future climate

Agenda

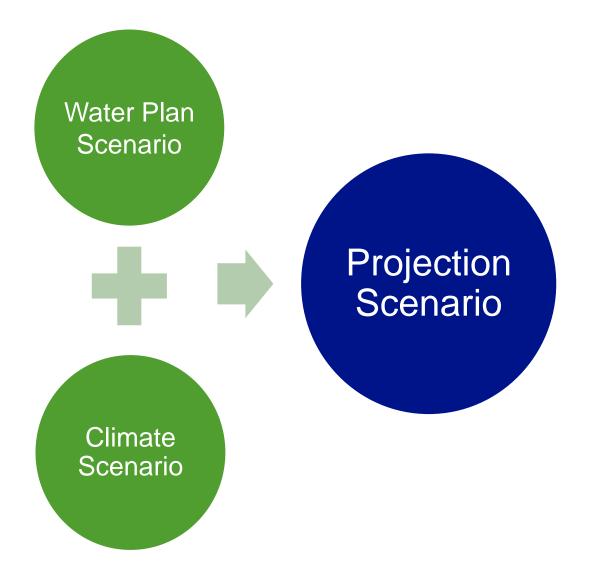

- Welcome
- Process and Timeline
- Final Projection Ensemble
- Water Plan Scenarios
- Climate Data
- Next Steps and Schedule

Agenda

- Welcome
- Process and Timeline
- Final Projection Ensemble
- Water Plan Scenarios
- Climate Data
- Next Steps and Schedule

2025 SYR Process

- Update hydrogeologic conceptual model
- Generate calibrated realizations (2025 CVM)
- Develop projection realizations
- Simulate projection realizations
- Evaluate simulation results and calculate Safe Yield
- Develop 2025 SYR report
- Reset Safe Yield (if necessary)

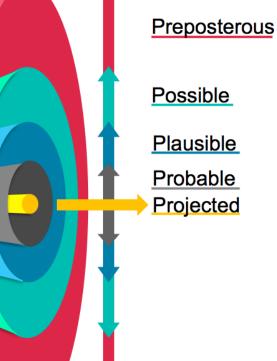


2025 SYR Timeline

What is a projection scenario?

Why do we need multiple projection scenarios?

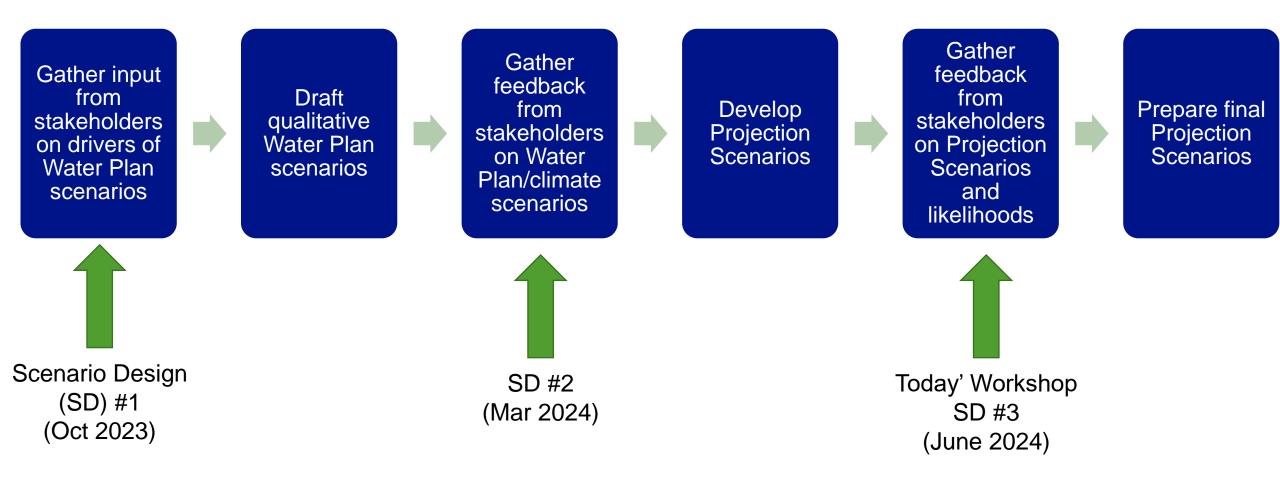
By simulating multiple possible futures, we can better understand the effect of *predictive uncertainty* on the net recharge and basin behaviors


Helps quantify risk of Material Physical Injury and adverse impacts

Goal for developing projection scenarios

Now

The future


Identify the possible range of Water Plans and climate conditions

(Steps 3 and 4 of the 2022 Safe Yield Reset Methodology)

Envisioning the future for strategic planning - Goal Atlas

Process to develop projection scenarios

Summary of Feedback from Scenario Design TM/Workshop #2

Change characterization of water supply availability \rightarrow suggest "utilization"

High uncertainty in timing of Conservation Regulation and future economics of Desalters

Support of proposed Projection Ensemble

Support for future workshop to define Material Physical Injury thresholds

Incorporating Feedback from Stakeholder/Peer Review

Limiting size of Projection Ensemble

Addressing high uncertainty in Conservation Regulation timeline and implementation

Acknowledging diversity in drivers of and opinions on scenarios

Clearly communicating costs and scope

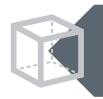
Identifying and implementing stakeholder-identified efficiencies in modeling approach

Agenda

- Welcome
- Process and Timeline
- Final Projection Ensemble
- Water Plan Scenarios
- Climate Data
- Next Steps and Schedule

Projection Ensemble

Scenario	Rationale	Demand	Groundwater Utilization	Imported Water Utilization	Climate Scenario
1	Expected/baseline	Expected	Expected	Expected	Expected
2	Hot/dry climate	Expected	Expected	Expected	Hot/dry
3	Cool/wet climate	Expected	Expected	Expected	Cool/wet
4	Impact of high demands	High	High	Low	Expected
5	Low groundwater levels	High	High	Low	Hot/dry
6	High net recharge	High	High	Low	Cool/wet
7	Impact of low demands	Low	Low	High	Expected
8	Low net recharge	Low	Low	High	Hot/dry
9	High groundwater levels	Low	Low	High	Cool/wet

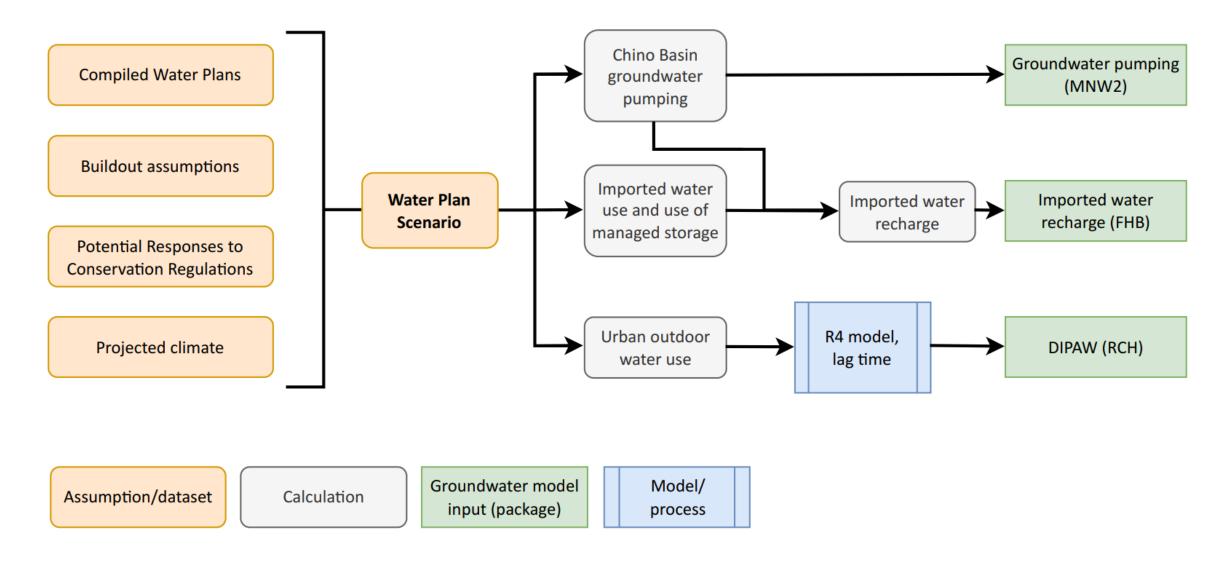


Agenda

- Welcome
- Process and Timeline
- Final Projection Ensemble
- Water Plan Scenarios
- Climate Data
- Next Steps and Schedule

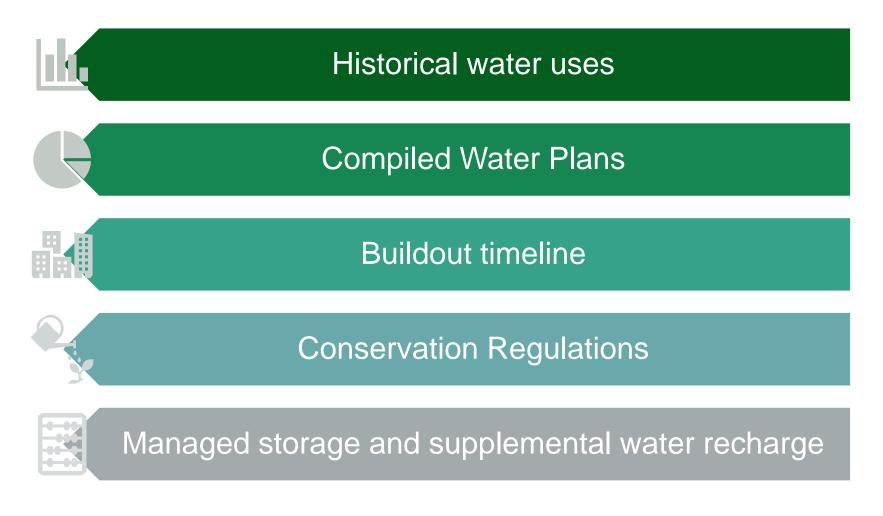
Translating Water Plan Scenarios into 2025 CVM Inputs

Which model inputs will vary for each Water Plan scenario?

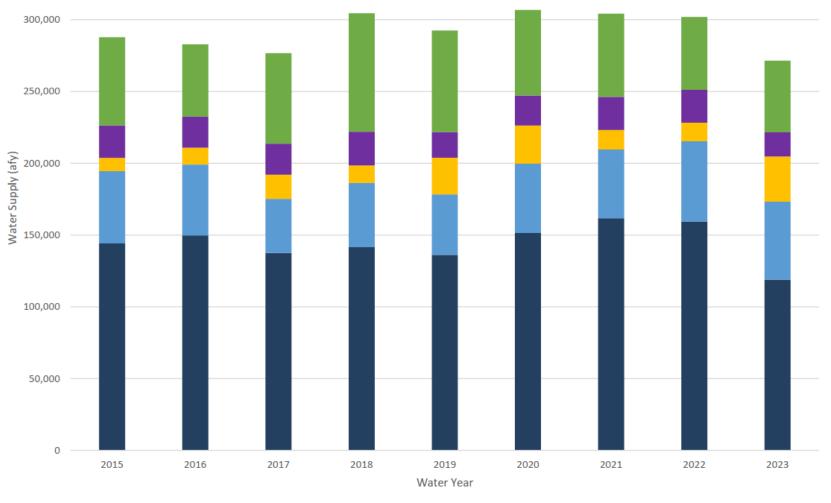

What are the current plans, projections, and assumptions for future cultural conditions in the Chino Basin?

How should the current plans and projections translate into Water Plan scenarios that represent the uncertainty in future cultural conditions?

How should the Water Plan scenarios reflect climatic variability?



Updating Model Inputs


Current Plans, Projections, and Assumptions for Future Cultural Conditions

Historical Water Supplies of the Chino Basin Parties

350,000

Chino Basin Groundwater Non-Chino Basin Groundwater Local Surface Water Recycled Water Imported Water

2025 Safe Yield Reevaluation | June 25, 2024

Compiled Water Plans

Appropriative Pool

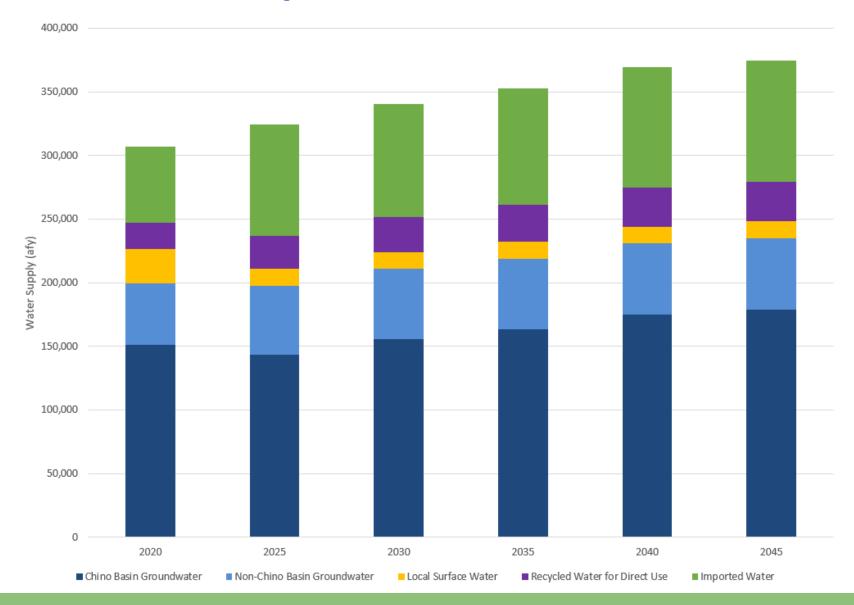
- Water Plans compiled from data collection and evaluation
- Historical patterns

Overlying Non-Ag Pool

- Data collection and evaluation
- Historical patterns

Ag Pool

- Projected buildout
- Historical patterns


Compiled Water Plans

Category	2020 ^(a)	2025	2030	2035	2040	2045
Volume (afy)						
Chino Basin Groundwater	151,365	143,179	155,712	163,446	175,211	179,016
Non-Chino Basin Groundwater	48,308	54,682	55,077	55,371	55,762	55,954
Local Surface Water	26,620	13,205	13,205	13,205	13,205	13,205
Imported Water	59,637	87,113	88,368	91,624	94,310	94,808
Recycled Water for Direct Use	20,857	25,891	27,888	29,185	30,782	31,282
Total	306,787	324,070	340,250	352,831	369,270	374,265
Percentage of Total Supply						
Chino Basin Groundwater	49%	44%	46%	46%	47%	48%
Non-Chino Basin Groundwater	16%	17%	16%	16%	15%	15%
Local Surface Water	9%	4%	4%	4%	4%	4%
Imported Water	19%	27%	26%	26%	26%	25%
Recycled Water for Direct Use	7%	8%	8%	8%	8%	8%
Total	100%	100%	100%	100%	100%	100%

^(a) Historical data compiled for Water Year 2020 for the Chino Basin SGMA Annual Report.

Compiled Water Plans

2025 Safe Yield Reevaluation | June 25, 2024

Buildout Timeline

Timelines and population growth are incorporated in Urban Water Management Plans and reflected in Water Plans

Municipal Appropriative Pool parties have indicated a buildout of 2040 or 2045

Conservation Regulation

Background and timeline

- The "Making Conservation a California Way of Life" (Conservation Regulation) aims to increase statewide conservation
- Drafts were released in October 2023 and revised in March, May, and June 2024
- Expected adoption in summer 2024, effective January 2025

Conservation Regulation

Water budget

 Requires calculating a budget for four components: residential water use, water losses, outdoor irrigation (CII w/ DIMs), and bonus incentives

Relevance to 2025 SYR

 Outdoor irrigation (residential and CII w/ DIMs) has the greatest impact on the Basin

Conversations with AP Parties

Met with four parties to discuss Conservation Regulations (Ontario, CVWD, JCSD, Upland)

Highlighted challenges with meeting nominal reductions greater than 10-15 percent

Many parties hired outside consultant to assist with developing more accurate water budgets compared to the State Board's database

Water Plans do not necessarily reflect the Conservation Regulation water budgets

Estimated Implementation of Conservation Regulation

Calculated nominal water use objectives for residential use based on State Board database

Adjusted for population growth

Calculated nominal water use objectives for CII w/ DIMs based on:

- Conservation Regulation
- Patterns derived from party-provided data

Use of Managed Storage and Supplemental Water Recharge

Future replenishment obligations are calculated by comparing aggregate pumping to aggregate production rights

If production rights are greater than pumping, then difference is credited to managed storage \rightarrow no replenishment

If pumping exceeds production rights, then difference is debited to managed storage and wet-water recharge

2020 Safe Yield Reevaluation assumed 80 percent of overproduction would be met through managed storage; current projections indicate that this has increased to 90 percent

2025 SYR will calculate managed storage on an aggregate basis

Water Plan Scenarios Buildout and Conservation Regulation

Low Demand

- Buildout: 2045
- Major AP retailers meet >80% of residential reductions, >90% of reductions in CII w/ DIMs
- 2045 demands: 339,000 acre-feet (af)

Expected Demand

- Buildout: 2040
- Major AP retailers meet >60% of residential reductions, >80% of reductions in CII w/ DIMs
- 2045 demands: 365,000 af

High Demand

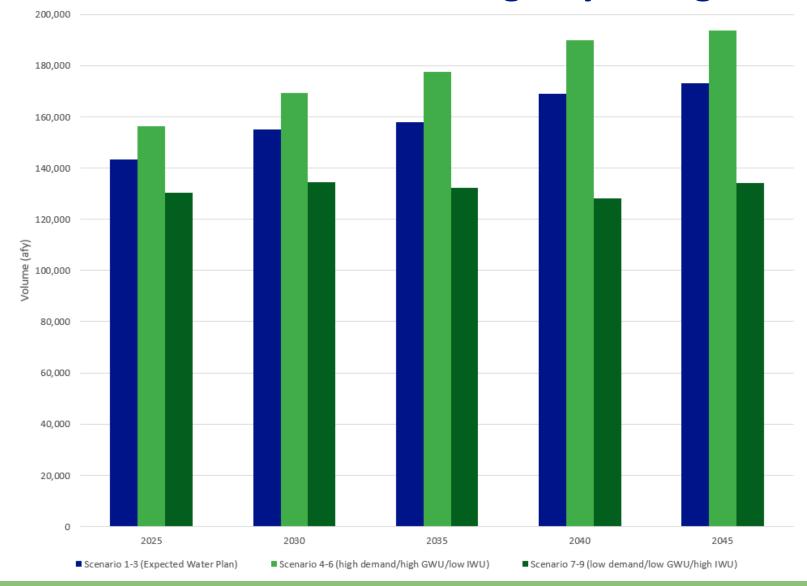
- Buildout: 2037
- Major AP retailers meet >35% of residential reductions, >50% of reductions in CII w/ DIMs
- 2045 demands: 374,000 af

Water Plan Scenarios Groundwater and Imported Water Utilization

Low Groundwater Utilization/High Imported Water Utilization

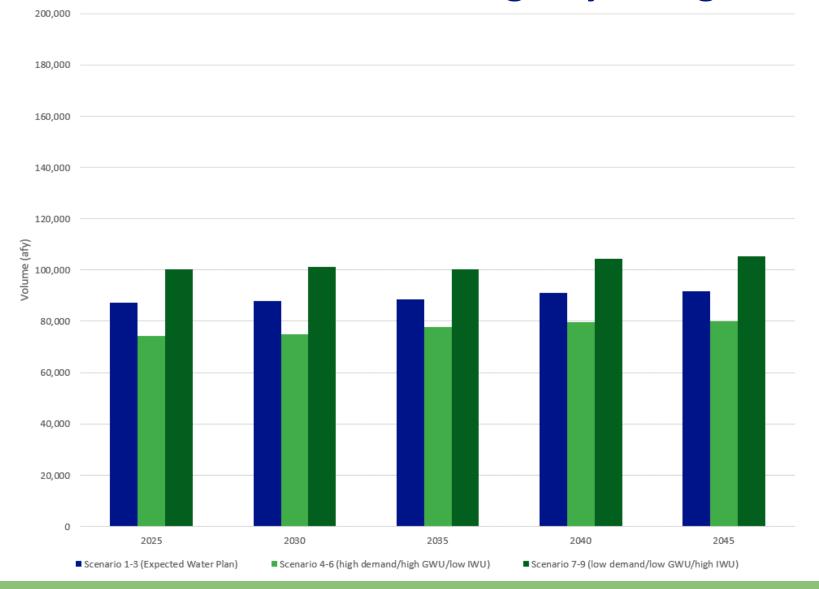
- Imported water/groundwater increases/decreases by 4% relative to expected (13,000-15,000 afy)
- Parties will meet 70 percent of replenishment obligations through managed storage

Expected Utilization


- Distribution is identical to Water Plans
- Parties will meet 90 percent of replenishment obligations through managed storage

High Groundwater Utilization/Low Imported Water Utilization

- Imported water/groundwater decreases/increases by 4% relative to expected (13,000-15,000 afy)
- Parties will meet 100 percent of replenishment obligations through managed storage


Total Chino Basin Groundwater Pumping Demands for Water Plan Scenarios – Average Hydrologic Year

2025 Safe Yield Reevaluation | June 25, 2024

Total Chino Basin Imported Water Demands for Water Plan Scenarios – Average Hydrologic Year

2025 Safe Yield Reevaluation | June 25, 2024

Variability of Water Plans due to Climate Scenarios

Climatic Variability

• Interannual or multi-year variability in precipitation and temperature

Variability of Demands due to Precipitation

• Fluctuate within ±10% of average demands, scaled by annual precipitation

Variability of Demands due to Temperature

• Demands will be adjusted 1.2% per degree Fahrenheit deviation from expected climate (calculated on average annual temperature)

Agenda

- Welcome
- Process and Timeline
- Final Projection Ensemble
- Water Plan Scenarios
- Climate Data
- Next Steps and Schedule

Developing Data for Climate Scenarios

Datasets for
projected climate
conditions

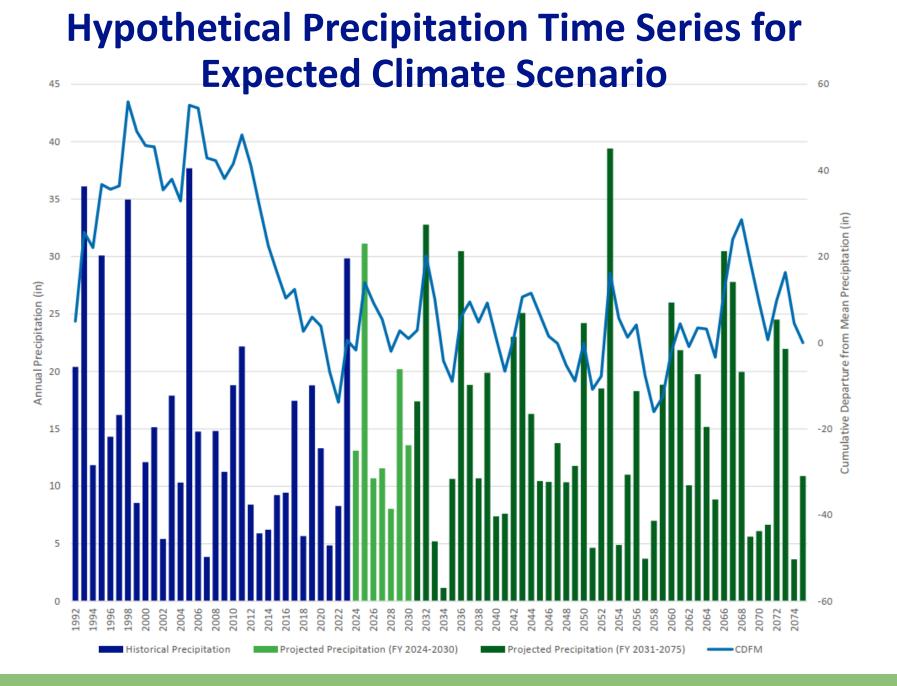
- Based on Cal-Adapt downscaled Global Climate Model (GCM) datasets
- Addressing discrepancies with the Cal-Adapt team

Generating projected precipitation

- FY 2024-2030 based on historical data (sampled from FY 1950-2022)
- FY 2031+ based on scenario from chosen GCM

Generating projected temperature

• Based on scenario from chosen GCM



Proposed Climate Scenarios

Climate	Precip	Temperature		
Scenario	FY 2024 through 2030	FY 2031 and beyond	Entire Projection Period	
Expected	Historical period with average precipitation ^(a)	SSP3-7.0 from selected GCM	SSP3-7.0 from selected GCM	
Hot/dry	Historical period with lowest precipitation	SSP5-8.5 from selected GCM	SSP5-8.5 from selected GCM	
Cool/wet	Historical period with highest precipitation	SSP2-4.5 from selected GCM	SSP2-4.5 from selected GCM	

^(a) Calculated based on continuous seven-year periods taken from the historical (PRISM) data of FY 1950 through 2022.

38

Agenda

- Welcome
- Process and Timeline
- Final Projection Ensemble
- Water Plan Scenarios
- Climate Data
- Next Steps and Schedule

Next Steps

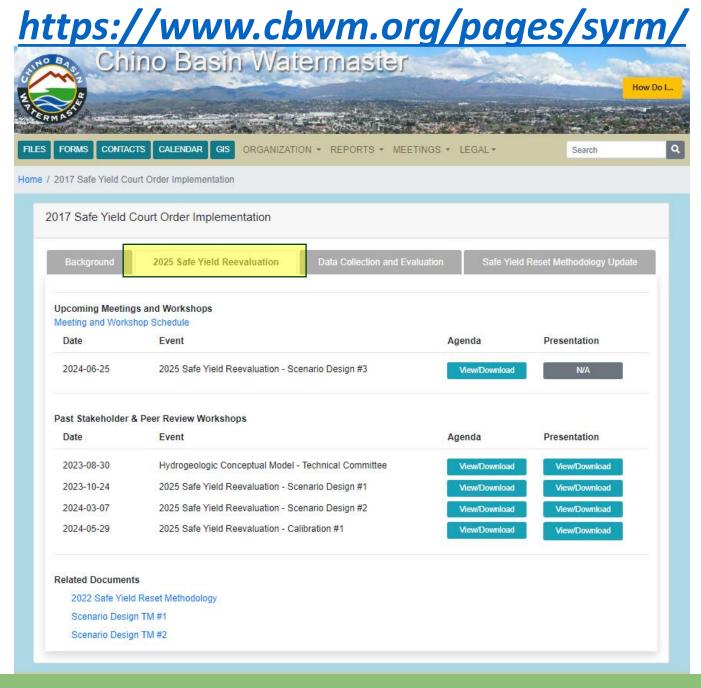
Continue refining climate data that will be used in the Projection Ensemble

Compile feedback from peer reviewers/stakeholders on draft Scenario TM #3 Please provide feedback to Garrett Rapp (<u>grapp@westyost.com</u>) by **July 19, 2024**

Respond to written feedback and publish revised draft Scenario TM #3

Upcoming workshops:

July/August 2024: Calibration workshop #2 (peer reviewers)


August 2024: Scenario design workshop #4 (peer reviewers/stakeholders)

2025 SYR Timeline

THANK YOU