

2025 Safe Yield Reevaluation

Chino Valley Model Calibration Workshop #2
August 6, 2024

Meeting Objectives

Develop an understanding of the final recalibration and uncertainty analysis and the calibrated realizations to be used in the 2025 Safe Yield Reevaluation (2025 SYR)

Gather feedback on recalibration/uncertainty analysis and chosen realizations

2025 SYR Timeline

Agenda

- Welcome
- Recap of May 29th Workshop
- Appropriative Pool Comments and Responses
- Results and Recommendations
- Next Steps and Schedule

Agenda

- Welcome
- Recap of May 29th Workshop
- Appropriative Pool Comments and Responses
- Results and Recommendations
- Next Steps and Schedule

Recap of 5/29 Workshop

Updates to the Chino Valley Model (CVM)

Manual calibration results

PESTPP-IES and uncertainty analysis

Next steps – continue exploring uncertainty

Initial Results – 5/29 Workshop

Net Recharge for FY 1992-2022 (88 Realizations)

Agenda

- Welcome
- Recap of May 29th Workshop
- Appropriative Pool Comments and Responses
- Results and Recommendations
- Next Steps and Schedule

Some Definitions

PESTPP-IES parameters can vary many model parameters

- E.g., a pilot point for specific yield (Sy) used as a PESTPP-IES parameter can vary the Sy values at that that cell and many adjacent cells
- In the context of PESTPP-IES, we are referring to parameters as PESTPP-IES parameters

Some Definitions

Overfitting

- We used "overfitting" to mean that PESTPP-IES generated unrealistic patterns of heterogeneity (e.g., horizontal hydraulic conductivity) given our prior knowledge of the hydrostratigraphy
- "Overfitting is normally deemed to have occurred when the cost of achieving this fit is the introduction of too much heterogeneity to the calibrated parameter field." – John Doherty, PEST Manual

Incorporating Comments re: Uncertainty

Since the 5/29 workshop, we have:

- Increased number of parameters
- Revised upper/lower bounds of parameters
- Increased number of desired realizations
- Updated layer weights during iterations

Agenda

- Welcome
- Recap of May 29th Workshop
- Appropriative Pool Comments and Responses
- Results and Recommendations
- Next Steps and Schedule

Exploring Uncertainty

Range of parameters

Number of realizations

Number of pilot points/parameters

Initial Results – 88 Realizations

Net Recharge for FY 1992-2022 (88 Realizations)

335 Realizations

Net Recharge for FY 1992-2022 (335 Realizations)

More desired realizations

More samples of calibrated models

Greater range of outcomes (uncertainty)

Adding Pilot Points/Parameters

PESTPP-IES algorithm is independent of number of pilot points/parameters,

...but adding more pilot points/parameters increases the required computational resources, which can slow the process

More pilot points/parameters may affect uncertainty

Adding Pilot Points/Parameters

25,326 adjusted parameters, including:

- Areal groundwater recharge multiplier
- Boundary inflow multiplier
- Max ET rate multiplier
- Streambed conductivity
- Hydraulic conductivity of faults
- HK values at pilot points in model layers 1 to 5
- VK values at pilot points in model layers 1 to 5. Most VK values are linked to HK values with varying ratios of their initial values.
- SY values at pilot points in model layer 1
- SS values at pilot points in model layers 2 to 5

2.7k Parameters

Net Recharge for FY 1992-2022 (335 Realizations)

25k Parameters

Net Recharge for FY 1992-2022 (316 Realizations)

2.7k Parameters

Mean Net Recharge, FY 1992-2022 (Iteration 2)

25k Parameters

Mean Net Recharge, FY 1992-2022 (Iteration 2)

Findings

Increasing pilot points/parameters by ~9.2x resulted in negligible change in uncertainty of net recharge and other water budget components

Recommendation:

Use configuration with 25k parameters and 316 realizations

Prior – HK

2.7k Parameters – HK

25k Parameters – HK (Realization 157)

Results – Realization 157 (R157)

Prepared by:

Well Location

Statistics

Target GWL (ft) Mean = 526.27 Standard Deviation = 39.66

Simulated GWL (ft) Mean = 547.06 Standard Deviation = 19.01

Moan Pacidual (ft) - 20 70

2025 CVM Realization: Run_41.2.157 Groundwater Level (GWL) HydroDaVE Well ID: 1206952 Well Name: AP-PA/7 Owner: Chino Basin Watermaster

Water Budget Components – All Realizations

Selection of Realizations for 2025 SYR

Choose realizations that represent mean net recharge and +/- 1, 2 SD from mean net recharge

Chosen Realizations

Chosen Realizations

Net Recharge for FY 1992-2022 with Chosen Realizations

Agenda

- Welcome
- Recap of May 29th Workshop
- Appropriative Pool Comments and Responses
- Results and Recommendations
- Next Steps and Schedule

Next Steps

Compile feedback from peer reviewers on recalibration/uncertainty analysis and proposed realizations (please email Garrett Rapp at grapp@westyost.com by Friday, August 23rd)

Finalize calibrated realizations, develop projection realizations

Upcoming workshops:

August 27, 2024: Scenario design workshop #4

(peer reviewers/stakeholders)

Fall 2024: MPI workshop (peer

reviewers/stakeholders)

2025 SYR Timeline

https://www.cbwm.org/pages/syrm/

