2017 Annual Report of the Prado Basin Habitat Sustainability Committee

Prado Basin Habitat Sustainability Committee Meeting May 9, 2018

Agenda

- 1. Background
- 2. Review of the draft 2017 Annual Report for the PBHSC
- 3. Next steps

Annual Report – Table of Contents

- Section 1 Background and Objectives
- Section 2 Monitoring, Data Collection, and Methods
- Section 3 Results and Interpretations
 - 3.1 Trends in Riparian Habitat Extent and Quality
 - 3.2 Groundwater and Its Relationship to the Riparian Habitat
 - 3.3 Climate and Its Relationship to the Riparian Habitat
 - 3.4 Surface Water and Its Relationship to the Riparian Habitat
 - 3.5 Other Factors and Their Relationship to the Riparian Habitat
 - 3.6 Analysis of Prospective Loss of Riparian Habitat
- Section 4 Conclusions and Recommendations
 - 4.1 Main Conclusions and Recommendations
 - 4.2 Recommended Mitigation Measures and/or Adjustments to the AM
 - 4.3 Recommended PBHSP for Fiscal Year 2018/19
- Section 5 References

Potential Stressors

Annual Report – Table of Contents

- Section 1 Background and Objectives
- Section 2 Monitoring, Data Collection, and Methods
- Section 3 Results and Interpretations
 - 3.1 Trends in Riparian Habitat Extent and Quality
 - 3.2 Groundwater and Its Relationship to the Riparian Habitat
 - 3.3 Climate and Its Relationship to the Riparian Habitat
 - 3.4 Surface Water and Its Relationship to the Riparian Habitat
 - 3.5 Other Factors and Their Relationship to the Riparian Habitat
 - 3.6 Analysis of Prospective Loss of Riparian Habitat
- Section 4 Conclusions and Recommendations
 - 4.1 Main Conclusions and Recommendations
 - 4.2 Recommended Mitigation Measures and/or Adjustments to the AM
 - 4.3 Recommended PBHSP for Fiscal Year 2018/19
- Section 5 References

Potential Stressors

Riparian Habitat Monitoring Program

- Objective: Monitor the extent and quality of the riparian habitat
 - Pre- and post-Peace II implementation
 - Ongoing
- Two Types of Assessment:
 - Regional Assessment
 - Interpretations of air photos
 - Remote sensing data → NDVI derived from Landsat satellite imagery
 - Site Specific Assessment \rightarrow "Ground-truth" of regional assessment
 - Vegetation Surveys (USBR)

Normalized Difference Vegetation Index (NDVI)

$$NDVI = \frac{NIR - VIS}{NIR + VIS}$$

Calculated based on ratio of the visible light and near-infrared light reflected from plant.

Numerical indicator of the extent and quality of vegetation because it is correlated with photosynthesis and plant productivity.

Available since 1980s - Can be used to assess the temporal and spatial changes in vegetation for the entire Prado Basin

New Monitoring Data and Methods in 2017

- Riparian Habitat Monitoring Program
 - High-resolution air photo
 - NDVI for 2017 and some historical data
 - Performed bias correction to Landsat 8 data
 - Statistically analyzed long-term trends in NDVI
 →Mann-Kendall Trend Test (Appendix B)
- Groundwater, Surface Water, and Climate Monitoring Program
 - No change in monitoring programs from previous year
 - Collected 2017 data
 - Analyzed groundwater surface water interactions
 - Analyze surface water/climate for the growing-season period

Annual Report – Table of Contents

- Section 1 Background and Objectives
- Section 2 Monitoring, Data Collection, and Methods
- Section 3 Results and Interpretations
 - 3.1 Trends in Riparian Habitat Extent and Quality
 - 3.2 Groundwater and Its Relationship to the Riparian Habitat
 - 3.3 Climate and Its Relationship to the Riparian Habitat
 - 3.4 Surface Water and Its Relationship to the Riparian Habitat
 - 3.5 Other Factors and Their Relationship to the Riparian Habitat
 - 3.6 Analysis of Prospective Loss of Riparian Habitat
- Section 4 Conclusions and Recommendations
 - 4.1 Main Conclusions and Recommendations
 - 4.2 Recommended Mitigation Measures and/or Adjustments to the AM
 - 4.3 Recommended PBHSP for Fiscal Year 2018/19
- Section 5 References

Potential Stressors

Extent 1999 = 6.69 mi^2

Author: VMW Date: 3/20/2018 File: 2017_Figure 3-1a_AirPhotos_VegExtent

Extent 1977 = 4.35 mi^2

Extent 2006 = 6.77 mi^2

2017 Annual Report Prado Basin Habitat Sustainability Committee

1 100

Historical Air Photos and Extent of Riparian Vegetation 1960 to 2016

Extent 1985 = 6.16 mi²

Author: SO Date: 4/5/2018 File: 2017_Figure 3-1b_2016 and 2017 Air Photos

2017 Annual Report Prado Basin Habitat Sustainability Committee Air Photos and Extent of the Riparian Vegetation 2016 and 2017

Figure 3-1b

Prepared by:

Author: RT Date: 4/18/2018 File: 2017_Figure 3-3_2016_2017_NDVI

2017 Annual Report Prado Basin Habitat Sustainability Committee Spatial NDVI of the Prado Basin

2016 and 2017

Figure 3-3

Figure 3-7a Trend Analysis of Growing Season NDVI for the 2017 Extent of the Riparian Vegetation - 1984-2017

NDVI Analysis – CC-2

NDVI Analysis – MC-1

Author: RT Date: 20171122 Filename: NDVI_MC-1_AirPhoto.grf 2017 Annual Report Prado Basin Habitat Sustainability Committee

Figure 3-6e

NDVI Analysis – SAR-1

Figure 3-6i

NDVI Trend Analysis – Chino Creek Areas

Annual Depature from the Average Growing-Season NDVI from the Baseline NDVI (Negative Change

2017 Annual Report Prado Basin Habitat Sustainability Committee

Figure 3-7b

NDVI Trend Analysis – Mill Creek Areas

Annual Depature from the Average Growing-Season NDVI from the Baseline NDVI (Positive Change)

WE

Annual Depature from the Average Growing-Season NDVI from the Baseline NDVI (Positive Change)

2017 Annual Report Prado Basin Habitat Sustainability Committee

NDVI Trend Analysis – Santa Ana River Areas

Annual Depature from the Average Growing-Season NDVI from the Baseline NDVI (Positive Change)

2017 Annual Report Prado Basin Habitat Sustainability Committee

Figure 3-7d

Characterization of Short Term Changes and Long-Term Trends in NDVI

Defined Area	Figure Number	Short-Term Changes from 1984 - 2015			Recent Short-Term Changes from 2015 - 2017			Long-Term
		Average Annual Change in NDVI	Largest Annual Increase in NDVI	Largest Annual Decrease in NDVI	2015 - 2016	2016 - 2017	2015 - 2017	Trend in NDVI 1984-2017 ¹
2017 Rip Veg Extent	3-4	0.024	0.061	-0.070	-0.022	0.019	-0.003	No Trend
Lower Prado	3-5	0.034	0.097	-0.087	-0.014	0.001	-0.013	Increasing
CC-1	3-6a	0.025	0.089	-0.058	-0.026	-0.027	-0.053	Increasing
CC-2	3-6b	0.025	0.074	0.071	-0.013	-0.011	-0.023	Increasing
CC-3	3-6c	0.030	0.136	-0.081	-0.028	-0.010	-0.038	Increasing
CC-4	3-6d	0.038	0.095	0.116	-0.010	-0.031	-0.042	Increasing
MC-1	3-6e	0.032	0.078	-0.104	-0.059	-0.008	-0.067	Increasing
MC-2	3-6f	0.043	0.162	-0.179	-0.017	-0.042	-0.060	No Trend
MC-3	3-6g	0.037	0.125	-0.122	-0.002	-0.051	0.049	No Trend
MC-4	3-6h	0.035	0.113	-0.095	-0.020	-0.030	-0.050	Increasing
SAR-1	3-6i	0.047	0.105	-0.212	-0.013	-0.212	-0.225	Increasing
SAR-2	3-6j	0.033	0.080	-0.107	0.004	0.076	0.080	Increasing
SAR-3	3-6k	0.030	0.089	-0.111	-0.021	-0.001	-0.022	Increasing

¹ - Determined from Mann-Kendall statistcal trend test. See Appendix B for a description of the Mann-Kendall test.

Conclusions and Recommendations

Riparian Habitat Monitoring Program

Conclusions:

- No trend in degradation contemporaneous with Peace II implementation
- For several areas, NDVI decreased from 2015-2017:
 - These declines are within the range of the long-term annual variability
 - Visual inspection of the air photos on these figures do not show evidence of degradation of the riparian vegetation, except for SAR-1

Recommendations:

- Acquire and analyze high-resolution air photo and NDVI for 2018
- Analyze NDVI in additional site-specific areas
- Perform a Mann-Kendall Test on the NDVI for other specific intervals of time
- Conduct site visit to SAR-1
- Recruit a biological expert
 - Review and refine vegetation survey methods
 - Design 2019 vegetation surveys

Annual Report – Table of Contents

- Section 1 Background and Objectives
- Section 2 Monitoring, Data Collection, and Methods
- Section 3 Results and Interpretations
 - 3.1 Trends in Riparian Habitat Extent and Quality
 - 3.2 Groundwater and Its Relationship to the Riparian Habitat
 - 3.3 Climate and Its Relationship to the Riparian Habitat
 - 3.4 Surface Water and Its Relationship to the Riparian Habitat
 - 3.5 Other Factors and Their Relationship to the Riparian Habitat
 - 3.6 Analysis of Prospective Loss of Riparian Habitat
- Section 4 Conclusions and Recommendations
 - 4.1 Main Conclusions and Recommendations
 - 4.2 Recommended Mitigation Measures and/or Adjustments to the AM
 - 4.3 Recommended PBHSP for Fiscal Year 2018/19
- Section 5 References

Potential Stressors

Production, Groundwater Levels, NDVI – Chino Creek

Author: RT Date: 20170404 Filename: Prod_GWLs_ChinoCreek.grf

Prepared by

2017 Annual Report Prado Basin Habitat Sustainability Committee Groundwater Production and Groundwater Levels versus NDVI Chino Creek Area for 1960-2017

Production, Groundwater Levels, NDVI – Mill Creek

Groundwater Levels versus NDVI Mill Creek Area for 1960-2017

Production, Groundwater Levels, NDVI – Santa Ana River

Author: RT Date: 20170404 Filename: Prod_GWLs_SAR.grf

Prepared by

2017 Annual Report Prado Basin Habitat Sustainability Committee

Groundwater Production and Groundwater Levels versus NDVI Santa Ana River and Lower Prado Area for 1960-2017

Conclusions and Recommendations

Groundwater vs. Riparian Habitat

- With exception of two locations, groundwater levels have remained stable across the Prado Basin and appear unaffected by Peace II implementation
- Two exceptions: northern reaches of Mill Creek and SAR
 - +/- 10 feet of groundwater level change since early 1990s
 - No observed degradation of riparian habitat that appears related to changes in groundwater levels
- Recommendations:
 - Continue monitoring program with no change in scope

Groundwater Surface Water Interaction – PB-8 Chino Creek

Groundwater Surface Water Interaction – PB-3 Santa Ana River

Groundwater Surface Water Interaction – PB-7 Chino Creek

Conclusions and Recommendations

Groundwater and Surface Water Interaction

- Northern reaches of Mill Creek and the SAR are "losing reaches" characterized by streambed recharge
- Most other areas along Chino Creek and Mill Creek are "gaining reaches" characterized by groundwater discharge
- However, at most locations in Prado Basin, groundwater/surface-water interactions are complex and there appears to be multiple and transient source waters that feed the shallow groundwater
- Recommendations:
 - Additional monitoring and testing to better characterize the source waters and the groundwater/surface-water interactions
 - High-frequency water-quality monitoring of EC and temperature at the wells and the surface water just upstream from the wells
 - Quarterly sampling and analysis of general minerals at the wells and surface-water site

Annual Report – Table of Contents

- Section 1 Background and Objectives
- Section 2 Monitoring, Data Collection, and Methods
- Section 3 Results and Interpretations
 - 3.1 Trends in Riparian Habitat Extent and Quality
 - 3.2 Groundwater and Its Relationship to the Riparian Habitat
 - 3.3 Climate and Its Relationship to the Riparian Habitat
 - 3.4 Surface Water and Its Relationship to the Riparian Habitat
 - 3.5 Other Factors and Their Relationship to the Riparian Habitat
 - 3.6 Analysis of Prospective Loss of Riparian Habitat
- Section 4 Conclusions and Recommendations
 - 4.1 Main Conclusions and Recommendations
 - 4.2 Recommended Mitigation Measures and/or Adjustments to the AM
 - 4.3 Recommended PBHSP for Fiscal Year 2018/19
- Section 5 References

Potential Stressors

Figure 3-14 Annual Precipitation in the Chino Basin - Water Years 1896-2017

Figure 3-15a Maximum and Minimum Temperature in Prado Basin - 1895-2017

Climate and NDVI – Chino Creek

Figure 3-16a

Climate and NDVI – Mill Creek

Climate and NDVI – Santa Ana River

2017 Annual Report

Prado Basin Habitat Sustainability Committee

Prepared by

Author: RT

Autoror. e. Date: 20190110 Filename: CDFM_Temp_NDVI_ChinoCreek.grf Climate versus NDVI Santa Ana River and Lower Prado Area for 1984-2017

Figure 3-16c

Conclusions and Recommendations

Climate vs. Riparian Habitat

- The quality of the riparian habitat show no long-term trend in degradation that correlates with the dry period from 1999 to 2017
 - → Source waters other than precipitation and storm flow are more important for consumptive use by riparian vegetation, such as base flow and shallow groundwater.
 - The quality of the riparian habitat (NDVI) show no consistent long-term relationships with fluctuations in growing-season temperatures.
 - The recent decreases in NDVI observed from 2015-2017 at several areas occurred during the recent warming trend in the minimum and maximum temperatures in Prado Basin, and at the end of the current 18-year dry period.
 - → Continued monitoring and analysis is required to determine the relationship between recent trends in temperature with the recent trends in the quality of the riparian habitat
- Recommendation:
 - Continue monitoring program with no change in scope

Trends in Surface Water Tributary to Prado Dam

Date: 20180215

Flename: 2017_Fig3-13_SW Discharge.grf

2017 Annual report Prado Basin Habitat Sustainability Committee

Surface Water and NDVI – Chino Creek

2017 Annual Report

Prado Basin Habitat Sustainability Committee

Surface-Water Discharge versus NDVI Chino Creek Area for 1971-2017

Author: RT Date: 20170410 C. Fliename: SW Discharge_NDVI_Chino Creek.grf

Surface Water and NDVI – Mill Creek

Surface-Water Discharge versus NDVI Mill Creek Area for 1971-2017

2017 Annual Report Prado Basin Habitat Sustainability Committee

Surface Water and NDVI – Santa Ana River

2017 Annual Report Prado Basin Habitat Sustainability Committee

Conclusions and Recommendations

Surface-Water Discharge vs. Riparian Habitat

- Discharge in the SAR and its tributaries has declined since 2005
 - \rightarrow Dry conditions and reductions in POTW discharge
- The quality of riparian habitat (NDVI) has shown no consistent relationship or declining trend that coincides with declines in growing-season stream discharge, and may have improved slightly during the Peace II Agreement period.
- The recent decreases in NDVI observed from 2015-2017 at several areas occurred when the growing-season discharge for both Chino Creek and Mill Creek decreased from 2015 to 2017, and the growing-season discharge remained stable in the SAR.
 - → Continued monitoring and analysis is required to determine the relationship between recent trends in surface water discharge with the recent trends in the quality of the riparian habitat
- Recommendation:
 - Continue monitoring program with no change in scope

Aprial Photo: July 2, 2017

Conclusions and Recommendations

Other Factors vs. Riparian Habitat

- Other factors that have can have adverse impacts on the riparian habitat.
 - Wildfire
 - Pests \rightarrow PSHB (beetle)
- The 2016 USBR surveys were the first site-specific surveys that documented the presence and abundance of the PSHB for the PBHSP, and it is too early to suggest that the PSHB has caused a decrease in NDVI.
- Recommendations:
 - Continue monitoring program
 - The PSHB should be monitored for and documented in future field vegetation surveys

Projected Change in Groundwater Production and Levels 2017-2030

Conclusions and Recommendations

Analysis of Prospective Loss of Riparian Habitat

- Projected changes is groundwater levels are predicted to remain steady across most of the Prado Basin area through 2030: There are minor changes (up to -2 feet) predicted to occur along the very north portions of Mill Creek and Chino Creek.
- There are no areas for prospective loss of riparian habitat
- Recommendations:
 - Continue monitoring of groundwater levels
 - Utilize an updated Chino Basin groundwater-flow model to project groundwater-level changes to characterize areas of prospective loss of riparian habitat

Annual Report – Table of Contents

- Section 1 Background and Objectives
- Section 2 Monitoring, Data Collection, and Methods
- Section 3 Results and Interpretations
 - 3.1 Trends in Riparian Habitat Extent and Quality
 - 3.2 Groundwater and Its Relationship to the Riparian Habitat
 - 3.3 Climate and Its Relationship to the Riparian Habitat
 - 3.4 Surface Water and Its Relationship to the Riparian Habitat
 - 3.5 Other Factors and Their Relationship to the Riparian Habitat
 - 3.6 Analysis of Prospective Loss of Riparian Habitat

Section 4 – Conclusions and Recommendations

- 4.1 Main Conclusions and Recommendations
- 4.2 Recommended Mitigation Measures and/or Adjustments to the AM
- 4.3 Recommended PBHSP for Fiscal Year 2018/19
- Section 5 References

Potential Stressors

Next Steps

- May 2018 The FY 2018/19 Recommended Scope and Budget for the PBHSP is being considered for approval by Watermaster/IEUA.
- May 23, 2018 PBHSC members submit comments and suggested revisions on the Draft 2017 Annual Report.
- June 7, 2018 Final 2017 Annual Report
- July 1, 2018 Next fiscal year monitoring program begins

Questions ?

NDVI Analysis – MC-3

